Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling
نویسندگان
چکیده
Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues.
منابع مشابه
Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor.
A neurosecretory pathway regulates a reversible developmental arrest and metabolic shift at the Caenorhabditis elegans dauer larval stage. Defects in an insulin-like signaling pathway cause arrest at the dauer stage. We show here that two C. elegans Akt/PKB homologs, akt-1 and akt-2, transduce insulin receptor-like signals that inhibit dauer arrest and that AKT-1 and AKT-2 signaling are indispe...
متن کاملPI3K-PKB/Akt pathway.
Identification of the phosphoinositide-3-kinase–protein kinase B/Akt (PI3K-PKB/Akt) pathway and activating receptor tyrosine kinases (RTKs) began in earnest in the early 1980s through vigorous attempts to characterize insulin receptor signaling (for review, see Alessi 2001; Brazil and Hemmings 2001). These humble beginnings led to the identification of the components and mechanism of insulin re...
متن کاملSignaling cascade of insulin-induced stimulation of L-dopa uptake in renal proximal tubule cells.
The inward l-dihydroxyphenylalanine (L-dopa) transport supplies renal proximal tubule cells (PTCs) with the precursor for dopamine synthesis. We have previously described insulin-induced stimulation of L-dopa uptake into PTCs. In the present paper we examined insulin-related signaling pathways involved in the increase of l-dopa transport into isolated rat PTCs. Insulin (50-500 microU/ml) increa...
متن کاملPlasma Membrane Subdomain Compartmentalization Contributes to Distinct Mechanisms of Ceramide Action on Insulin Signaling
OBJECTIVE Ceramide is now recognized as a negative regulator of insulin signaling by impairing protein kinase B (PKB)/Akt activation. In different cells, two distinct mechanisms have been proposed to mediate ceramide inhibition of PKB/Akt: one involving atypical protein kinase C zeta (PKCzeta) and the other the protein phosphatase-2 (PP2A). We hypothesized that ceramide action through PKCzeta o...
متن کاملThe Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase.
B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 2 شماره
صفحات -
تاریخ انتشار 2006